
De Volksbank PSD2 Sandbox
Version 8 - 8 December 2020

Change log

V5

In this version we have made some textual changes and added new endpoints:
GET Sandbox AIS GetConsent for AIS, and the endpoints for CAF (Confirmation
of the Availability of Funds): POST Sandbox CAF initiateConsent and POST
Sandbox CAF FundsConfirmation.

V6 For V6, the OneTimeAgended payments have been added (named future dated
payments by the Berlin Group) as well as the payment cancellation
functionality.

V8 In this version, the initiatePeriodicPayment endpoint has been added.

Introduction
This document describes the test environment that de Volksbank offers for testing its PSD2 Open

Banking APIs inside a ‘sandbox’ environment.

The difference between Sandbox and production
The production environment that enables the PSD2 Open Banking functionality is complex. It consists of

many different systems in which each system takes care of a portion of the business logic.

The Sandbox looks identical to the production environment, but instead of returning live data (or live

error responses) it returns static data. This does not mean that it always returns exactly the same data

for each invocation: based on the given input, in particular the consentId, a different response (including

error responses) may be returned.

The Sandbox environment enables you to develop and test your application:

• It simulates all interactions with the Open Banking APIs of de Volksbank, similar to the

production environment;

• It allows you to fully test the OAuth2 process without needing an actual de Volksbank

account. This includes the interaction with our production Web Service Gateway (WSG),

which requires a valid client certificate (see https://openbanking.devolksbank.nl/apis.html);

• It simulates specific error scenarios.

Get started
To give you a kick-start, we provided a zip file that contains three Postman collections and a Postman

environment file. These can be used to test all available Authorize and PSD2 AIS, PIS and CAF APIs. The

Postman files contain the correct URLs for the various endpoints and provide all the (required) header

arguments and bodies (where applicable).

https://openbanking.devolksbank.nl/apis.html

Inside sandbox-devolksbank.postman_environment.json there are a number of environment variable

values that start with “your-“. You should replace these with a valid value. In particular, the following

environment variables are critical: clientId, clientSecret, redirectUrl, accessToken, consentId, paymentId

and resourceId. The first three variables are fixed and are part of the initial sign up process. The latter

variables are returned in the form of JSON response messages by various requests.

The zip file can be found at https://openbanking.devolksbank.nl/documentation.html.

Currently the following Postman requests are supported:

https://openbanking.devolksbank.nl/documentation.html

The main flows that are available in the Sandbox are explained in more detail below.

Happy flow scenario
The happy flow consists of three flows:

• A flow to initiate an AIS or CAF consent or to initiate a payment. The first API calls to retrieve an

AIS, PIS or CAF resource (Sandbox Consent Services, Sandbox Payment Initiation Services and

Sandbox Funds Confirmation Consent Services APIs on the Developer Portal) are:

- Sandbox AIS InitiateConsent;

- Sandbox PIS Initiate OneTimeDirect / OneTimeAgended / Deferred / Recurring / Periodic

Payment;

- Sandbox CAF InitiateConsent;

• A flow to retrieve an authorization code of the PSU and to exchange this code for access and

refresh tokens (needed for AIS, PIS and CAF). See also the paragraph Authorization flow;

• A flow to execute AIS, PIS or CAF Services (for these calls you need a (new) access token, except

for the getConsentStatus and CancelPayment calls, for which you only need a clientId):

- AIS: a flow to retrieve account information (accounts, balances and transactions) and to

manage an AIS consent (get status, get details and delete consent). On the Developer Portal:

Sandbox Account Information Services, Sandbox Consent Status Services and Sandbox Manage

Consent Services;

- PIS: a flow to execute a Deferred or Recurring Payment, to cancel a payment (only cancelling a

OneTimeAgended payment is allowed) and to retrieve a payment status (for OneTimeDirect,

OneTimeAgended, Deferred and Recurring Payments). On the Developer Portal: Sandbox

Payment Execution Services, Sandbox Payment Cancellation Services and Sandbox Payment

Status Services. Note: to get the correct response for a GetOneTimeAgendedPaymentStatus call,

use the paymentId SNS1313131313021;

- CAF: a flow to request a confirmation of the availability of funds. On the Developer Portal:

Sandbox Funds Confirmation Services.

The flows above are described in detail in the PDF files ‘API AIS’, ‘API PIS’ and ‘API CAF’ on our Open

Banking website: https://openbanking.devolksbank.nl/documentation.html.

Authorization flow

Within the Sandbox, the flow as described below is used to simulate the process for authorizing a TPP to

access data of a customer of de Volksbank.

Note that the authorization flow described below is not part of the Berlin Group API, and cannot be

found in a Swagger file on the Developer Portal. This is a de Volksbank-specific API on its Web Service

Gateway (WSG) that is used for authorization. The WSG is connected with a de Volksbank-specific

OAuth2 server, which is used for authentication.

https://openbanking.devolksbank.nl/documentation.html

Explanation:

1. You, as TPP, initiate the authorization flow.

See Postman request ‘Sandbox Authorize’.

2. All requests are routed through the WSG, including the request above. This particular request is

forwarded to ‘mock confirmation’, the Sandbox implementation that mimics the behavior of the

production login and consent flows. Here a screen (see note *1) is presented, with a button to

grant access.

3. The ‘mock confirmation’ returns the sessionData in the form of a JWT token to the WSG.

4. The WSG verifies this JWT token and redirects an authorization code to the redirect URL that

you provided.

5. With this authorization code, in combination with the clientId and clientSecret that you received

from de Volksbank, your app can make a request for an access token and a refresh token.

See Postman request ’Sandbox Exchange Token’.

6. If all data from above is valid, the WSG returns an access token and a refresh token.

7. The access token is valid for 10 minutes. After 10 minutes this access token cannot be used

anymore. With the refresh token that was returned, a new access token can be obtained.

See Postman request ‘Sandbox Refresh token’.

Note *1: In production, de Volksbank customer is redirected to the login page, where they need to log

in, select an account and finally grant access by hitting the ‘Granting access’ button. In the Sandbox the

following screen is presented, where you only have to hit the ‘Geef toestemming’ button:

API flow

Once the TPP app obtains a valid access token, it can execute the API REST calls as described in the

Sandbox Swagger files on the Developer Portal. For all these calls the following flow is used:

Explanation:

1. With the access token obtained in the previous flow, the TPP app can execute other operations

from the de Volksbank PSD2 API.

See for example Postman requests ‘Sandbox AIS GetAccounts’ or ’Sandbox PIS

Execute(Deferred or Recurring) Payment’.

2. The request above is forwarded via the WSG to ‘mock-Psd2’. Here validations on all input fields,

including header and request parameters, take place. Note that these validations are

production-like.

3. If all validations are passed the request is processed by returning static data. What static data is

returned exactly depends on the input consentId, paymentId, or (in some scenarios) the

resourceId.

The paragraph ‘Unhappy flow scenario’ provides more details about the response that is

returned.

Unhappy flow scenario
In the production environment, errors may occur even if all input is valid. These error scenarios can be

simulated by using the following consentIds or paymentIds in a Postman request. This consentId or

paymentId should be set in the Postman environment file.

Note that for requests that do not need a consentId or paymentId as input (‘Initiate consent’ and

‘Initiate payment’), the resourceId can be used.

consentId Unhappy scenario

SNS1313131313000 Mandate (resource) not found
This response is returned when the consentId or paymentId is invalid.

SNS1313131313001 Mandate (consent/payment) is expired

SNS1313131313002 Mandate (consent/payment) is revoked by the PSU

SNS1313131313004 AIS GetTransactions input validation error
For example endDate is before startDate.

SNS1313131313007 IBAN is not in contract

SNS1313131313019 Generic error from backend system.

SNS1313131313021 AIS GetConsentStatus, mandate is revoked by PSU

SNS1313131313022 AIS GetConsentStatus, mandate is expired

SNS1313131313023 AIS GetConsentStatus, mandate is terminated by TPP

SNS1313131313030 Resource not found
This response is returned when the resourceId is invalid.

Testing the APIs
The easiest way to test the APIs is via the Postman collections and environment file that we prepared for

the Sandbox.

Note that the returned HTTP response codes and response messages for the happy flows as well as all

unhappy flows come from static data. By default all available Postman requests will return a happy flow

scenario. By providing a special consentId or paymentId, different error scenarios can be simulated. The

consentIds/paymentIds that correspond with the error scenarios can be found in the paragraph

‘Unhappy flow scenario’.

In addition, the Sandbox tries to simulate production-like behavior (to some extent). For example, the

validation on input request and/or header parameters is production-like. Because of this you may get an

error response in some use-cases, if the input validation fails. For example, if you provide an invalid

consentId/paymentId you will get a HTTP 401 response with the response message that this mandate

cannot be found.

Also the AIS GetTransactions flow is simulated in such a way that the returned responses depend on the

input: a (fixed) number of transactions or a response indicating that no more transactions are available

can be returned.

See Postman request ‘Sandbox AIS GetTransactions (Last entry)’.

Postman request ‘Sandbox GetTransactions’ looks like this:
{{host}}/psd2/sandbox/v1/accounts/SNS7642002867101/transactions

?bookingStatus=booked&dateTo=2018-10-31

If you replace for example: bookingStatus=booked with bookingStatus=XXX you will get a production-

like response: HTTP response code = 400: Bad Request.

